Metamath Proof Explorer


Theorem tposcurfcl

Description: The transposed curry functor of a functor F : D X. C --> E is a functor tposcurry ( F ) : C --> ( D --> E ) . (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Hypotheses tposcurfcl.g
|- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) )
tposcurfcl.q
|- Q = ( D FuncCat E )
tposcurfcl.c
|- ( ph -> C e. Cat )
tposcurfcl.d
|- ( ph -> D e. Cat )
tposcurfcl.f
|- ( ph -> F e. ( ( D Xc. C ) Func E ) )
Assertion tposcurfcl
|- ( ph -> G e. ( C Func Q ) )

Proof

Step Hyp Ref Expression
1 tposcurfcl.g
 |-  ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) )
2 tposcurfcl.q
 |-  Q = ( D FuncCat E )
3 tposcurfcl.c
 |-  ( ph -> C e. Cat )
4 tposcurfcl.d
 |-  ( ph -> D e. Cat )
5 tposcurfcl.f
 |-  ( ph -> F e. ( ( D Xc. C ) Func E ) )
6 eqid
 |-  ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) )
7 eqidd
 |-  ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) )
8 3 4 5 7 cofuswapfcl
 |-  ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) )
9 6 2 3 4 8 curfcl
 |-  ( ph -> ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) e. ( C Func Q ) )
10 1 9 eqeltrd
 |-  ( ph -> G e. ( C Func Q ) )