| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurfcl.g |
|- ( ph -> G = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) ) |
| 2 |
|
tposcurfcl.q |
|- Q = ( D FuncCat E ) |
| 3 |
|
tposcurfcl.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
tposcurfcl.d |
|- ( ph -> D e. Cat ) |
| 5 |
|
tposcurfcl.f |
|- ( ph -> F e. ( ( D Xc. C ) Func E ) ) |
| 6 |
|
eqid |
|- ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) = ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) |
| 7 |
|
eqidd |
|- ( ph -> ( F o.func ( C swapF D ) ) = ( F o.func ( C swapF D ) ) ) |
| 8 |
3 4 5 7
|
cofuswapfcl |
|- ( ph -> ( F o.func ( C swapF D ) ) e. ( ( C Xc. D ) Func E ) ) |
| 9 |
6 2 3 4 8
|
curfcl |
|- ( ph -> ( <. C , D >. curryF ( F o.func ( C swapF D ) ) ) e. ( C Func Q ) ) |
| 10 |
1 9
|
eqeltrd |
|- ( ph -> G e. ( C Func Q ) ) |