Metamath Proof Explorer


Theorem tposcurfcl

Description: The transposed curry functor of a functor F : D X. C --> E is a functor tposcurry ( F ) : C --> ( D --> E ) . (Contributed by Zhi Wang, 9-Oct-2025)

Ref Expression
Hypotheses tposcurfcl.g ( 𝜑𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) )
tposcurfcl.q 𝑄 = ( 𝐷 FuncCat 𝐸 )
tposcurfcl.c ( 𝜑𝐶 ∈ Cat )
tposcurfcl.d ( 𝜑𝐷 ∈ Cat )
tposcurfcl.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
Assertion tposcurfcl ( 𝜑𝐺 ∈ ( 𝐶 Func 𝑄 ) )

Proof

Step Hyp Ref Expression
1 tposcurfcl.g ( 𝜑𝐺 = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) )
2 tposcurfcl.q 𝑄 = ( 𝐷 FuncCat 𝐸 )
3 tposcurfcl.c ( 𝜑𝐶 ∈ Cat )
4 tposcurfcl.d ( 𝜑𝐷 ∈ Cat )
5 tposcurfcl.f ( 𝜑𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) )
6 eqid ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) = ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
7 eqidd ( 𝜑 → ( 𝐹func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹func ( 𝐶 swapF 𝐷 ) ) )
8 3 4 5 7 cofuswapfcl ( 𝜑 → ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) )
9 6 2 3 4 8 curfcl ( 𝜑 → ( ⟨ 𝐶 , 𝐷 ⟩ curryF ( 𝐹func ( 𝐶 swapF 𝐷 ) ) ) ∈ ( 𝐶 Func 𝑄 ) )
10 1 9 eqeltrd ( 𝜑𝐺 ∈ ( 𝐶 Func 𝑄 ) )