| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposcurfcl.g |
⊢ ( 𝜑 → 𝐺 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ) |
| 2 |
|
tposcurfcl.q |
⊢ 𝑄 = ( 𝐷 FuncCat 𝐸 ) |
| 3 |
|
tposcurfcl.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
tposcurfcl.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 5 |
|
tposcurfcl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐷 ×c 𝐶 ) Func 𝐸 ) ) |
| 6 |
|
eqid |
⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) = ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) |
| 8 |
3 4 5 7
|
cofuswapfcl |
⊢ ( 𝜑 → ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐸 ) ) |
| 9 |
6 2 3 4 8
|
curfcl |
⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐹 ∘func ( 𝐶 swapF 𝐷 ) ) ) ∈ ( 𝐶 Func 𝑄 ) ) |
| 10 |
1 9
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝑄 ) ) |