Metamath Proof Explorer


Theorem tposf1o2

Description: Condition of a bijective transposition. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tposf1o2 RelAF:A1-1 ontoBtposF:A-11-1 ontoB

Proof

Step Hyp Ref Expression
1 tposf12 RelAF:A1-1BtposF:A-11-1B
2 tposfo2 RelAF:AontoBtposF:A-1ontoB
3 1 2 anim12d RelAF:A1-1BF:AontoBtposF:A-11-1BtposF:A-1ontoB
4 df-f1o F:A1-1 ontoBF:A1-1BF:AontoB
5 df-f1o tposF:A-11-1 ontoBtposF:A-11-1BtposF:A-1ontoB
6 3 4 5 3imtr4g RelAF:A1-1 ontoBtposF:A-11-1 ontoB