Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Union
Function transposition
tposideq2
Next ⟩
Equinumerosity
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposideq2
Description:
Two ways of expressing the swap function.
(Contributed by
Zhi Wang
, 6-Oct-2025)
Ref
Expression
Hypothesis
tposideq2.1
⊢
R
=
A
×
B
Assertion
tposideq2
⊢
tpos
I
↾
R
=
x
∈
R
⟼
⋃
x
-1
Proof
Step
Hyp
Ref
Expression
1
tposideq2.1
⊢
R
=
A
×
B
2
relxp
⊢
Rel
⁡
A
×
B
3
1
releqi
⊢
Rel
⁡
R
↔
Rel
⁡
A
×
B
4
2
3
mpbir
⊢
Rel
⁡
R
5
tposideq
⊢
Rel
⁡
R
→
tpos
I
↾
R
=
x
∈
R
⟼
⋃
x
-1
6
4
5
ax-mp
⊢
tpos
I
↾
R
=
x
∈
R
⟼
⋃
x
-1