Metamath Proof Explorer


Theorem tposres

Description: The transposition restricted to a relation. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposres Rel R tpos F R = tpos F R -1

Proof

Step Hyp Ref Expression
1 0nelrel0 Rel R ¬ R
2 nel2nelin ¬ R ¬ dom F R
3 1 2 syl Rel R ¬ dom F R
4 3 tposres3 Rel R tpos F R = tpos F R -1