Metamath Proof Explorer


Theorem tposres

Description: The transposition restricted to a relation. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposres ( Rel 𝑅 → ( tpos 𝐹𝑅 ) = tpos ( 𝐹 𝑅 ) )

Proof

Step Hyp Ref Expression
1 0nelrel0 ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 )
2 nel2nelin ( ¬ ∅ ∈ 𝑅 → ¬ ∅ ∈ ( dom 𝐹𝑅 ) )
3 1 2 syl ( Rel 𝑅 → ¬ ∅ ∈ ( dom 𝐹𝑅 ) )
4 3 tposres3 ( Rel 𝑅 → ( tpos 𝐹𝑅 ) = tpos ( 𝐹 𝑅 ) )