| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposres2.1 |
⊢ ( 𝜑 → ¬ ∅ ∈ ( dom 𝐹 ∩ 𝑅 ) ) |
| 2 |
1
|
tposres2 |
⊢ ( 𝜑 → ( tpos 𝐹 ↾ 𝑅 ) = ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ) |
| 3 |
|
relcnv |
⊢ Rel ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) |
| 4 |
|
cnvf1o |
⊢ ( Rel ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) → ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) : ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) –1-1-onto→ ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) : ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) –1-1-onto→ ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) |
| 6 |
|
f1ofo |
⊢ ( ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) : ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) –1-1-onto→ ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) → ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) : ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) –onto→ ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) : ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) –onto→ ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) |
| 8 |
|
forn |
⊢ ( ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) : ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) –onto→ ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) → ran ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) = ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ran ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) = ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) |
| 10 |
|
cnvcnvss |
⊢ ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ⊆ dom ( 𝐹 ↾ ◡ 𝑅 ) |
| 11 |
|
resdmss |
⊢ dom ( 𝐹 ↾ ◡ 𝑅 ) ⊆ ◡ 𝑅 |
| 12 |
10 11
|
sstri |
⊢ ◡ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ⊆ ◡ 𝑅 |
| 13 |
9 12
|
eqsstri |
⊢ ran ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ◡ 𝑅 |
| 14 |
|
cores |
⊢ ( ran ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ◡ 𝑅 → ( ( 𝐹 ↾ ◡ 𝑅 ) ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) ) |
| 15 |
13 14
|
ax-mp |
⊢ ( ( 𝐹 ↾ ◡ 𝑅 ) ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 16 |
|
dftpos6 |
⊢ tpos ( 𝐹 ↾ ◡ 𝑅 ) = ( ( ( 𝐹 ↾ ◡ 𝑅 ) ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) ∪ ( { ∅ } × ( ( 𝐹 ↾ ◡ 𝑅 ) “ { ∅ } ) ) ) |
| 17 |
|
ressn |
⊢ ( ( 𝐹 ↾ ◡ 𝑅 ) ↾ { ∅ } ) = ( { ∅ } × ( ( 𝐹 ↾ ◡ 𝑅 ) “ { ∅ } ) ) |
| 18 |
|
resres |
⊢ ( ( 𝐹 ↾ ◡ 𝑅 ) ↾ { ∅ } ) = ( 𝐹 ↾ ( ◡ 𝑅 ∩ { ∅ } ) ) |
| 19 |
|
relcnv |
⊢ Rel ◡ 𝑅 |
| 20 |
|
0nelrel0 |
⊢ ( Rel ◡ 𝑅 → ¬ ∅ ∈ ◡ 𝑅 ) |
| 21 |
19 20
|
ax-mp |
⊢ ¬ ∅ ∈ ◡ 𝑅 |
| 22 |
|
disjsn |
⊢ ( ( ◡ 𝑅 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ◡ 𝑅 ) |
| 23 |
21 22
|
mpbir |
⊢ ( ◡ 𝑅 ∩ { ∅ } ) = ∅ |
| 24 |
23
|
reseq2i |
⊢ ( 𝐹 ↾ ( ◡ 𝑅 ∩ { ∅ } ) ) = ( 𝐹 ↾ ∅ ) |
| 25 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
| 26 |
18 24 25
|
3eqtri |
⊢ ( ( 𝐹 ↾ ◡ 𝑅 ) ↾ { ∅ } ) = ∅ |
| 27 |
17 26
|
eqtr3i |
⊢ ( { ∅ } × ( ( 𝐹 ↾ ◡ 𝑅 ) “ { ∅ } ) ) = ∅ |
| 28 |
27
|
uneq2i |
⊢ ( ( ( 𝐹 ↾ ◡ 𝑅 ) ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) ∪ ( { ∅ } × ( ( 𝐹 ↾ ◡ 𝑅 ) “ { ∅ } ) ) ) = ( ( ( 𝐹 ↾ ◡ 𝑅 ) ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) ∪ ∅ ) |
| 29 |
|
un0 |
⊢ ( ( ( 𝐹 ↾ ◡ 𝑅 ) ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) ∪ ∅ ) = ( ( 𝐹 ↾ ◡ 𝑅 ) ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 30 |
16 28 29
|
3eqtri |
⊢ tpos ( 𝐹 ↾ ◡ 𝑅 ) = ( ( 𝐹 ↾ ◡ 𝑅 ) ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 31 |
|
tposrescnv |
⊢ ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 32 |
15 30 31
|
3eqtr4ri |
⊢ ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) = tpos ( 𝐹 ↾ ◡ 𝑅 ) |
| 33 |
2 32
|
eqtrdi |
⊢ ( 𝜑 → ( tpos 𝐹 ↾ 𝑅 ) = tpos ( 𝐹 ↾ ◡ 𝑅 ) ) |