| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-tpos |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 2 |
1
|
reseq1i |
⊢ ( tpos 𝐹 ↾ ◡ 𝑅 ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ↾ ◡ 𝑅 ) |
| 3 |
|
resco |
⊢ ( ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ↾ ◡ 𝑅 ) = ( 𝐹 ∘ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ 𝑅 ) ) |
| 4 |
|
resmpt3 |
⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ 𝑅 ) = ( 𝑥 ∈ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ∩ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) |
| 5 |
|
cnvin |
⊢ ◡ ( 𝑅 ∩ dom 𝐹 ) = ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) |
| 6 |
|
dmres |
⊢ dom ( 𝐹 ↾ 𝑅 ) = ( 𝑅 ∩ dom 𝐹 ) |
| 7 |
6
|
cnveqi |
⊢ ◡ dom ( 𝐹 ↾ 𝑅 ) = ◡ ( 𝑅 ∩ dom 𝐹 ) |
| 8 |
|
incom |
⊢ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ∩ ◡ 𝑅 ) = ( ◡ 𝑅 ∩ ( ◡ dom 𝐹 ∪ { ∅ } ) ) |
| 9 |
|
indi |
⊢ ( ◡ 𝑅 ∩ ( ◡ dom 𝐹 ∪ { ∅ } ) ) = ( ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) ∪ ( ◡ 𝑅 ∩ { ∅ } ) ) |
| 10 |
|
relcnv |
⊢ Rel ◡ 𝑅 |
| 11 |
|
0nelrel0 |
⊢ ( Rel ◡ 𝑅 → ¬ ∅ ∈ ◡ 𝑅 ) |
| 12 |
10 11
|
ax-mp |
⊢ ¬ ∅ ∈ ◡ 𝑅 |
| 13 |
|
disjsn |
⊢ ( ( ◡ 𝑅 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ ◡ 𝑅 ) |
| 14 |
12 13
|
mpbir |
⊢ ( ◡ 𝑅 ∩ { ∅ } ) = ∅ |
| 15 |
14
|
uneq2i |
⊢ ( ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) ∪ ( ◡ 𝑅 ∩ { ∅ } ) ) = ( ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) ∪ ∅ ) |
| 16 |
|
un0 |
⊢ ( ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) ∪ ∅ ) = ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) |
| 17 |
15 16
|
eqtri |
⊢ ( ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) ∪ ( ◡ 𝑅 ∩ { ∅ } ) ) = ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) |
| 18 |
8 9 17
|
3eqtri |
⊢ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ∩ ◡ 𝑅 ) = ( ◡ 𝑅 ∩ ◡ dom 𝐹 ) |
| 19 |
5 7 18
|
3eqtr4ri |
⊢ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ∩ ◡ 𝑅 ) = ◡ dom ( 𝐹 ↾ 𝑅 ) |
| 20 |
19
|
mpteq1i |
⊢ ( 𝑥 ∈ ( ( ◡ dom 𝐹 ∪ { ∅ } ) ∩ ◡ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) |
| 21 |
4 20
|
eqtri |
⊢ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ 𝑅 ) = ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) |
| 22 |
21
|
coeq2i |
⊢ ( 𝐹 ∘ ( ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ↾ ◡ 𝑅 ) ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 23 |
2 3 22
|
3eqtri |
⊢ ( tpos 𝐹 ↾ ◡ 𝑅 ) = ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom ( 𝐹 ↾ 𝑅 ) ↦ ∪ ◡ { 𝑥 } ) ) |