Metamath Proof Explorer


Theorem tposrescnv

Description: The transposition restricted to a converse is the transposition of the restricted class, with the empty set removed from the domain. Note that the right hand side is a more useful form of ` ( tpos ( F |`` R ) |`( _V \ { (/) } ) ) by df-tpos . (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposrescnv ( tpos 𝐹 𝑅 ) = ( 𝐹 ∘ ( 𝑥 dom ( 𝐹𝑅 ) ↦ { 𝑥 } ) )

Proof

Step Hyp Ref Expression
1 df-tpos tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )
2 1 reseq1i ( tpos 𝐹 𝑅 ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) ↾ 𝑅 )
3 resco ( ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) ↾ 𝑅 ) = ( 𝐹 ∘ ( ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ↾ 𝑅 ) )
4 resmpt3 ( ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ↾ 𝑅 ) = ( 𝑥 ∈ ( ( dom 𝐹 ∪ { ∅ } ) ∩ 𝑅 ) ↦ { 𝑥 } )
5 cnvin ( 𝑅 ∩ dom 𝐹 ) = ( 𝑅 dom 𝐹 )
6 dmres dom ( 𝐹𝑅 ) = ( 𝑅 ∩ dom 𝐹 )
7 6 cnveqi dom ( 𝐹𝑅 ) = ( 𝑅 ∩ dom 𝐹 )
8 incom ( ( dom 𝐹 ∪ { ∅ } ) ∩ 𝑅 ) = ( 𝑅 ∩ ( dom 𝐹 ∪ { ∅ } ) )
9 indi ( 𝑅 ∩ ( dom 𝐹 ∪ { ∅ } ) ) = ( ( 𝑅 dom 𝐹 ) ∪ ( 𝑅 ∩ { ∅ } ) )
10 relcnv Rel 𝑅
11 0nelrel0 ( Rel 𝑅 → ¬ ∅ ∈ 𝑅 )
12 10 11 ax-mp ¬ ∅ ∈ 𝑅
13 disjsn ( ( 𝑅 ∩ { ∅ } ) = ∅ ↔ ¬ ∅ ∈ 𝑅 )
14 12 13 mpbir ( 𝑅 ∩ { ∅ } ) = ∅
15 14 uneq2i ( ( 𝑅 dom 𝐹 ) ∪ ( 𝑅 ∩ { ∅ } ) ) = ( ( 𝑅 dom 𝐹 ) ∪ ∅ )
16 un0 ( ( 𝑅 dom 𝐹 ) ∪ ∅ ) = ( 𝑅 dom 𝐹 )
17 15 16 eqtri ( ( 𝑅 dom 𝐹 ) ∪ ( 𝑅 ∩ { ∅ } ) ) = ( 𝑅 dom 𝐹 )
18 8 9 17 3eqtri ( ( dom 𝐹 ∪ { ∅ } ) ∩ 𝑅 ) = ( 𝑅 dom 𝐹 )
19 5 7 18 3eqtr4ri ( ( dom 𝐹 ∪ { ∅ } ) ∩ 𝑅 ) = dom ( 𝐹𝑅 )
20 19 mpteq1i ( 𝑥 ∈ ( ( dom 𝐹 ∪ { ∅ } ) ∩ 𝑅 ) ↦ { 𝑥 } ) = ( 𝑥 dom ( 𝐹𝑅 ) ↦ { 𝑥 } )
21 4 20 eqtri ( ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ↾ 𝑅 ) = ( 𝑥 dom ( 𝐹𝑅 ) ↦ { 𝑥 } )
22 21 coeq2i ( 𝐹 ∘ ( ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ↾ 𝑅 ) ) = ( 𝐹 ∘ ( 𝑥 dom ( 𝐹𝑅 ) ↦ { 𝑥 } ) )
23 2 3 22 3eqtri ( tpos 𝐹 𝑅 ) = ( 𝐹 ∘ ( 𝑥 dom ( 𝐹𝑅 ) ↦ { 𝑥 } ) )