| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-tpos |
|- tpos F = ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |
| 2 |
1
|
reseq1i |
|- ( tpos F |` `' R ) = ( ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |` `' R ) |
| 3 |
|
resco |
|- ( ( F o. ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) ) |` `' R ) = ( F o. ( ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |` `' R ) ) |
| 4 |
|
resmpt3 |
|- ( ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |` `' R ) = ( x e. ( ( `' dom F u. { (/) } ) i^i `' R ) |-> U. `' { x } ) |
| 5 |
|
cnvin |
|- `' ( R i^i dom F ) = ( `' R i^i `' dom F ) |
| 6 |
|
dmres |
|- dom ( F |` R ) = ( R i^i dom F ) |
| 7 |
6
|
cnveqi |
|- `' dom ( F |` R ) = `' ( R i^i dom F ) |
| 8 |
|
incom |
|- ( ( `' dom F u. { (/) } ) i^i `' R ) = ( `' R i^i ( `' dom F u. { (/) } ) ) |
| 9 |
|
indi |
|- ( `' R i^i ( `' dom F u. { (/) } ) ) = ( ( `' R i^i `' dom F ) u. ( `' R i^i { (/) } ) ) |
| 10 |
|
relcnv |
|- Rel `' R |
| 11 |
|
0nelrel0 |
|- ( Rel `' R -> -. (/) e. `' R ) |
| 12 |
10 11
|
ax-mp |
|- -. (/) e. `' R |
| 13 |
|
disjsn |
|- ( ( `' R i^i { (/) } ) = (/) <-> -. (/) e. `' R ) |
| 14 |
12 13
|
mpbir |
|- ( `' R i^i { (/) } ) = (/) |
| 15 |
14
|
uneq2i |
|- ( ( `' R i^i `' dom F ) u. ( `' R i^i { (/) } ) ) = ( ( `' R i^i `' dom F ) u. (/) ) |
| 16 |
|
un0 |
|- ( ( `' R i^i `' dom F ) u. (/) ) = ( `' R i^i `' dom F ) |
| 17 |
15 16
|
eqtri |
|- ( ( `' R i^i `' dom F ) u. ( `' R i^i { (/) } ) ) = ( `' R i^i `' dom F ) |
| 18 |
8 9 17
|
3eqtri |
|- ( ( `' dom F u. { (/) } ) i^i `' R ) = ( `' R i^i `' dom F ) |
| 19 |
5 7 18
|
3eqtr4ri |
|- ( ( `' dom F u. { (/) } ) i^i `' R ) = `' dom ( F |` R ) |
| 20 |
19
|
mpteq1i |
|- ( x e. ( ( `' dom F u. { (/) } ) i^i `' R ) |-> U. `' { x } ) = ( x e. `' dom ( F |` R ) |-> U. `' { x } ) |
| 21 |
4 20
|
eqtri |
|- ( ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |` `' R ) = ( x e. `' dom ( F |` R ) |-> U. `' { x } ) |
| 22 |
21
|
coeq2i |
|- ( F o. ( ( x e. ( `' dom F u. { (/) } ) |-> U. `' { x } ) |` `' R ) ) = ( F o. ( x e. `' dom ( F |` R ) |-> U. `' { x } ) ) |
| 23 |
2 3 22
|
3eqtri |
|- ( tpos F |` `' R ) = ( F o. ( x e. `' dom ( F |` R ) |-> U. `' { x } ) ) |