| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposres2.1 |
⊢ ( 𝜑 → ¬ ∅ ∈ ( dom 𝐹 ∩ 𝑅 ) ) |
| 2 |
|
tposresg |
⊢ ( tpos 𝐹 ↾ 𝑅 ) = ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) ) |
| 3 |
|
resinsn |
⊢ ( ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) = ∅ ↔ ¬ ∅ ∈ ( dom 𝐹 ∩ 𝑅 ) ) |
| 4 |
1 3
|
sylibr |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) = ∅ ) |
| 5 |
4
|
uneq2d |
⊢ ( 𝜑 → ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) ) = ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ∅ ) ) |
| 6 |
2 5
|
eqtrid |
⊢ ( 𝜑 → ( tpos 𝐹 ↾ 𝑅 ) = ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ∅ ) ) |
| 7 |
|
un0 |
⊢ ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ∅ ) = ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝜑 → ( tpos 𝐹 ↾ 𝑅 ) = ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ) |