Metamath Proof Explorer


Theorem tposres2

Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypothesis tposres2.1 ( 𝜑 → ¬ ∅ ∈ ( dom 𝐹𝑅 ) )
Assertion tposres2 ( 𝜑 → ( tpos 𝐹𝑅 ) = ( tpos 𝐹 𝑅 ) )

Proof

Step Hyp Ref Expression
1 tposres2.1 ( 𝜑 → ¬ ∅ ∈ ( dom 𝐹𝑅 ) )
2 tposresg ( tpos 𝐹𝑅 ) = ( ( tpos 𝐹 𝑅 ) ∪ ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) )
3 resinsn ( ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) = ∅ ↔ ¬ ∅ ∈ ( dom 𝐹𝑅 ) )
4 1 3 sylibr ( 𝜑 → ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) = ∅ )
5 4 uneq2d ( 𝜑 → ( ( tpos 𝐹 𝑅 ) ∪ ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) ) = ( ( tpos 𝐹 𝑅 ) ∪ ∅ ) )
6 2 5 eqtrid ( 𝜑 → ( tpos 𝐹𝑅 ) = ( ( tpos 𝐹 𝑅 ) ∪ ∅ ) )
7 un0 ( ( tpos 𝐹 𝑅 ) ∪ ∅ ) = ( tpos 𝐹 𝑅 )
8 6 7 eqtrdi ( 𝜑 → ( tpos 𝐹𝑅 ) = ( tpos 𝐹 𝑅 ) )