| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rescom |
⊢ ( ( tpos 𝐹 ↾ ( ( V × V ) ∪ { ∅ } ) ) ↾ 𝑅 ) = ( ( tpos 𝐹 ↾ 𝑅 ) ↾ ( ( V × V ) ∪ { ∅ } ) ) |
| 2 |
|
reltpos |
⊢ Rel tpos 𝐹 |
| 3 |
|
dmtposss |
⊢ dom tpos 𝐹 ⊆ ( ( V × V ) ∪ { ∅ } ) |
| 4 |
|
relssres |
⊢ ( ( Rel tpos 𝐹 ∧ dom tpos 𝐹 ⊆ ( ( V × V ) ∪ { ∅ } ) ) → ( tpos 𝐹 ↾ ( ( V × V ) ∪ { ∅ } ) ) = tpos 𝐹 ) |
| 5 |
2 3 4
|
mp2an |
⊢ ( tpos 𝐹 ↾ ( ( V × V ) ∪ { ∅ } ) ) = tpos 𝐹 |
| 6 |
5
|
reseq1i |
⊢ ( ( tpos 𝐹 ↾ ( ( V × V ) ∪ { ∅ } ) ) ↾ 𝑅 ) = ( tpos 𝐹 ↾ 𝑅 ) |
| 7 |
|
resres |
⊢ ( ( tpos 𝐹 ↾ 𝑅 ) ↾ ( ( V × V ) ∪ { ∅ } ) ) = ( tpos 𝐹 ↾ ( 𝑅 ∩ ( ( V × V ) ∪ { ∅ } ) ) ) |
| 8 |
1 6 7
|
3eqtr3i |
⊢ ( tpos 𝐹 ↾ 𝑅 ) = ( tpos 𝐹 ↾ ( 𝑅 ∩ ( ( V × V ) ∪ { ∅ } ) ) ) |
| 9 |
|
indi |
⊢ ( 𝑅 ∩ ( ( V × V ) ∪ { ∅ } ) ) = ( ( 𝑅 ∩ ( V × V ) ) ∪ ( 𝑅 ∩ { ∅ } ) ) |
| 10 |
|
cnvcnv |
⊢ ◡ ◡ 𝑅 = ( 𝑅 ∩ ( V × V ) ) |
| 11 |
10
|
uneq1i |
⊢ ( ◡ ◡ 𝑅 ∪ ( 𝑅 ∩ { ∅ } ) ) = ( ( 𝑅 ∩ ( V × V ) ) ∪ ( 𝑅 ∩ { ∅ } ) ) |
| 12 |
9 11
|
eqtr4i |
⊢ ( 𝑅 ∩ ( ( V × V ) ∪ { ∅ } ) ) = ( ◡ ◡ 𝑅 ∪ ( 𝑅 ∩ { ∅ } ) ) |
| 13 |
12
|
reseq2i |
⊢ ( tpos 𝐹 ↾ ( 𝑅 ∩ ( ( V × V ) ∪ { ∅ } ) ) ) = ( tpos 𝐹 ↾ ( ◡ ◡ 𝑅 ∪ ( 𝑅 ∩ { ∅ } ) ) ) |
| 14 |
|
resundi |
⊢ ( tpos 𝐹 ↾ ( ◡ ◡ 𝑅 ∪ ( 𝑅 ∩ { ∅ } ) ) ) = ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ( tpos 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) ) |
| 15 |
|
rescom |
⊢ ( ( tpos 𝐹 ↾ { ∅ } ) ↾ 𝑅 ) = ( ( tpos 𝐹 ↾ 𝑅 ) ↾ { ∅ } ) |
| 16 |
|
tposres0 |
⊢ ( tpos 𝐹 ↾ { ∅ } ) = ( 𝐹 ↾ { ∅ } ) |
| 17 |
16
|
reseq1i |
⊢ ( ( tpos 𝐹 ↾ { ∅ } ) ↾ 𝑅 ) = ( ( 𝐹 ↾ { ∅ } ) ↾ 𝑅 ) |
| 18 |
|
resres |
⊢ ( ( tpos 𝐹 ↾ 𝑅 ) ↾ { ∅ } ) = ( tpos 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) |
| 19 |
15 17 18
|
3eqtr3ri |
⊢ ( tpos 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) = ( ( 𝐹 ↾ { ∅ } ) ↾ 𝑅 ) |
| 20 |
|
rescom |
⊢ ( ( 𝐹 ↾ { ∅ } ) ↾ 𝑅 ) = ( ( 𝐹 ↾ 𝑅 ) ↾ { ∅ } ) |
| 21 |
|
resres |
⊢ ( ( 𝐹 ↾ 𝑅 ) ↾ { ∅ } ) = ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) |
| 22 |
19 20 21
|
3eqtri |
⊢ ( tpos 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) = ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) |
| 23 |
22
|
uneq2i |
⊢ ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ( tpos 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) ) = ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) ) |
| 24 |
14 23
|
eqtri |
⊢ ( tpos 𝐹 ↾ ( ◡ ◡ 𝑅 ∪ ( 𝑅 ∩ { ∅ } ) ) ) = ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) ) |
| 25 |
8 13 24
|
3eqtri |
⊢ ( tpos 𝐹 ↾ 𝑅 ) = ( ( tpos 𝐹 ↾ ◡ ◡ 𝑅 ) ∪ ( 𝐹 ↾ ( 𝑅 ∩ { ∅ } ) ) ) |