Metamath Proof Explorer


Theorem tposresg

Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposresg tpos F R = tpos F R -1 -1 F R

Proof

Step Hyp Ref Expression
1 rescom tpos F V × V R = tpos F R V × V
2 reltpos Rel tpos F
3 dmtposss dom tpos F V × V
4 relssres Rel tpos F dom tpos F V × V tpos F V × V = tpos F
5 2 3 4 mp2an tpos F V × V = tpos F
6 5 reseq1i tpos F V × V R = tpos F R
7 resres tpos F R V × V = tpos F R V × V
8 1 6 7 3eqtr3i tpos F R = tpos F R V × V
9 indi R V × V = R V × V R
10 cnvcnv R -1 -1 = R V × V
11 10 uneq1i R -1 -1 R = R V × V R
12 9 11 eqtr4i R V × V = R -1 -1 R
13 12 reseq2i tpos F R V × V = tpos F R -1 -1 R
14 resundi tpos F R -1 -1 R = tpos F R -1 -1 tpos F R
15 rescom tpos F R = tpos F R
16 tposres0 tpos F = F
17 16 reseq1i tpos F R = F R
18 resres tpos F R = tpos F R
19 15 17 18 3eqtr3ri tpos F R = F R
20 rescom F R = F R
21 resres F R = F R
22 19 20 21 3eqtri tpos F R = F R
23 22 uneq2i tpos F R -1 -1 tpos F R = tpos F R -1 -1 F R
24 14 23 eqtri tpos F R -1 -1 R = tpos F R -1 -1 F R
25 8 13 24 3eqtri tpos F R = tpos F R -1 -1 F R