Metamath Proof Explorer


Theorem tposres0

Description: The transposition of a set restricted to the empty set is the set restricted to the empty set. See also ressn and dftpos6 for an alternate proof. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposres0 tpos F = F

Proof

Step Hyp Ref Expression
1 relres Rel tpos F
2 relres Rel F
3 velsn x x =
4 brtpos0 y V tpos F y F y
5 4 elv tpos F y F y
6 breq1 x = x tpos F y tpos F y
7 breq1 x = x F y F y
8 6 7 bibi12d x = x tpos F y x F y tpos F y F y
9 5 8 mpbiri x = x tpos F y x F y
10 3 9 sylbi x x tpos F y x F y
11 10 pm5.32i x x tpos F y x x F y
12 vex y V
13 12 brresi x tpos F y x x tpos F y
14 12 brresi x F y x x F y
15 11 13 14 3bitr4i x tpos F y x F y
16 1 2 15 eqbrriv tpos F = F