| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
⊢ Rel ( tpos 𝐹 ↾ { ∅ } ) |
| 2 |
|
relres |
⊢ Rel ( 𝐹 ↾ { ∅ } ) |
| 3 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
| 4 |
|
brtpos0 |
⊢ ( 𝑦 ∈ V → ( ∅ tpos 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) ) |
| 5 |
4
|
elv |
⊢ ( ∅ tpos 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) |
| 6 |
|
breq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 tpos 𝐹 𝑦 ↔ ∅ tpos 𝐹 𝑦 ) ) |
| 7 |
|
breq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) ) |
| 8 |
6 7
|
bibi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 tpos 𝐹 𝑦 ↔ 𝑥 𝐹 𝑦 ) ↔ ( ∅ tpos 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) ) ) |
| 9 |
5 8
|
mpbiri |
⊢ ( 𝑥 = ∅ → ( 𝑥 tpos 𝐹 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
| 10 |
3 9
|
sylbi |
⊢ ( 𝑥 ∈ { ∅ } → ( 𝑥 tpos 𝐹 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) |
| 11 |
10
|
pm5.32i |
⊢ ( ( 𝑥 ∈ { ∅ } ∧ 𝑥 tpos 𝐹 𝑦 ) ↔ ( 𝑥 ∈ { ∅ } ∧ 𝑥 𝐹 𝑦 ) ) |
| 12 |
|
vex |
⊢ 𝑦 ∈ V |
| 13 |
12
|
brresi |
⊢ ( 𝑥 ( tpos 𝐹 ↾ { ∅ } ) 𝑦 ↔ ( 𝑥 ∈ { ∅ } ∧ 𝑥 tpos 𝐹 𝑦 ) ) |
| 14 |
12
|
brresi |
⊢ ( 𝑥 ( 𝐹 ↾ { ∅ } ) 𝑦 ↔ ( 𝑥 ∈ { ∅ } ∧ 𝑥 𝐹 𝑦 ) ) |
| 15 |
11 13 14
|
3bitr4i |
⊢ ( 𝑥 ( tpos 𝐹 ↾ { ∅ } ) 𝑦 ↔ 𝑥 ( 𝐹 ↾ { ∅ } ) 𝑦 ) |
| 16 |
1 2 15
|
eqbrriv |
⊢ ( tpos 𝐹 ↾ { ∅ } ) = ( 𝐹 ↾ { ∅ } ) |