Metamath Proof Explorer


Theorem tposres0

Description: The transposition of a set restricted to the empty set is the set restricted to the empty set. See also ressn and dftpos6 for an alternate proof. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposres0 ( tpos 𝐹 ↾ { ∅ } ) = ( 𝐹 ↾ { ∅ } )

Proof

Step Hyp Ref Expression
1 relres Rel ( tpos 𝐹 ↾ { ∅ } )
2 relres Rel ( 𝐹 ↾ { ∅ } )
3 velsn ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ )
4 brtpos0 ( 𝑦 ∈ V → ( ∅ tpos 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) )
5 4 elv ( ∅ tpos 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 )
6 breq1 ( 𝑥 = ∅ → ( 𝑥 tpos 𝐹 𝑦 ↔ ∅ tpos 𝐹 𝑦 ) )
7 breq1 ( 𝑥 = ∅ → ( 𝑥 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) )
8 6 7 bibi12d ( 𝑥 = ∅ → ( ( 𝑥 tpos 𝐹 𝑦𝑥 𝐹 𝑦 ) ↔ ( ∅ tpos 𝐹 𝑦 ↔ ∅ 𝐹 𝑦 ) ) )
9 5 8 mpbiri ( 𝑥 = ∅ → ( 𝑥 tpos 𝐹 𝑦𝑥 𝐹 𝑦 ) )
10 3 9 sylbi ( 𝑥 ∈ { ∅ } → ( 𝑥 tpos 𝐹 𝑦𝑥 𝐹 𝑦 ) )
11 10 pm5.32i ( ( 𝑥 ∈ { ∅ } ∧ 𝑥 tpos 𝐹 𝑦 ) ↔ ( 𝑥 ∈ { ∅ } ∧ 𝑥 𝐹 𝑦 ) )
12 vex 𝑦 ∈ V
13 12 brresi ( 𝑥 ( tpos 𝐹 ↾ { ∅ } ) 𝑦 ↔ ( 𝑥 ∈ { ∅ } ∧ 𝑥 tpos 𝐹 𝑦 ) )
14 12 brresi ( 𝑥 ( 𝐹 ↾ { ∅ } ) 𝑦 ↔ ( 𝑥 ∈ { ∅ } ∧ 𝑥 𝐹 𝑦 ) )
15 11 13 14 3bitr4i ( 𝑥 ( tpos 𝐹 ↾ { ∅ } ) 𝑦𝑥 ( 𝐹 ↾ { ∅ } ) 𝑦 )
16 1 2 15 eqbrriv ( tpos 𝐹 ↾ { ∅ } ) = ( 𝐹 ↾ { ∅ } )