Metamath Proof Explorer


Theorem dftpos6

Description: Alternate definition of tpos . The second half of the right hand side could apply ressn and become ` ( F |`{ (/) } ) (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion dftpos6 tpos 𝐹 = ( ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) ) ∪ ( { ∅ } × ( 𝐹 “ { ∅ } ) ) )

Proof

Step Hyp Ref Expression
1 dftpos5 tpos 𝐹 = ( 𝐹 ∘ ( ( 𝑥 dom 𝐹 { 𝑥 } ) ∪ { ⟨ ∅ , ∅ ⟩ } ) )
2 coundi ( 𝐹 ∘ ( ( 𝑥 dom 𝐹 { 𝑥 } ) ∪ { ⟨ ∅ , ∅ ⟩ } ) ) = ( ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) ) ∪ ( 𝐹 ∘ { ⟨ ∅ , ∅ ⟩ } ) )
3 0ex ∅ ∈ V
4 3 3 cosni ( 𝐹 ∘ { ⟨ ∅ , ∅ ⟩ } ) = ( { ∅ } × ( 𝐹 “ { ∅ } ) )
5 4 uneq2i ( ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) ) ∪ ( 𝐹 ∘ { ⟨ ∅ , ∅ ⟩ } ) ) = ( ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) ) ∪ ( { ∅ } × ( 𝐹 “ { ∅ } ) ) )
6 1 2 5 3eqtri tpos 𝐹 = ( ( 𝐹 ∘ ( 𝑥 dom 𝐹 { 𝑥 } ) ) ∪ ( { ∅ } × ( 𝐹 “ { ∅ } ) ) )