| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dftpos5 |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ∪ { 〈 ∅ , ∅ 〉 } ) ) |
| 2 |
|
coundi |
⊢ ( 𝐹 ∘ ( ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ∪ { 〈 ∅ , ∅ 〉 } ) ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) ∪ ( 𝐹 ∘ { 〈 ∅ , ∅ 〉 } ) ) |
| 3 |
|
0ex |
⊢ ∅ ∈ V |
| 4 |
3 3
|
cosni |
⊢ ( 𝐹 ∘ { 〈 ∅ , ∅ 〉 } ) = ( { ∅ } × ( 𝐹 “ { ∅ } ) ) |
| 5 |
4
|
uneq2i |
⊢ ( ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) ∪ ( 𝐹 ∘ { 〈 ∅ , ∅ 〉 } ) ) = ( ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) ∪ ( { ∅ } × ( 𝐹 “ { ∅ } ) ) ) |
| 6 |
1 2 5
|
3eqtri |
⊢ tpos 𝐹 = ( ( 𝐹 ∘ ( 𝑥 ∈ ◡ dom 𝐹 ↦ ∪ ◡ { 𝑥 } ) ) ∪ ( { ∅ } × ( 𝐹 “ { ∅ } ) ) ) |