| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-tpos |
⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 2 |
1
|
dmeqi |
⊢ dom tpos 𝐹 = dom ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) |
| 3 |
|
dmcoss |
⊢ dom ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) |
| 5 |
4
|
dmmptss |
⊢ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) |
| 6 |
|
relcnv |
⊢ Rel ◡ dom 𝐹 |
| 7 |
|
df-rel |
⊢ ( Rel ◡ dom 𝐹 ↔ ◡ dom 𝐹 ⊆ ( V × V ) ) |
| 8 |
6 7
|
mpbi |
⊢ ◡ dom 𝐹 ⊆ ( V × V ) |
| 9 |
|
unss1 |
⊢ ( ◡ dom 𝐹 ⊆ ( V × V ) → ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ( V × V ) ∪ { ∅ } ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ◡ dom 𝐹 ∪ { ∅ } ) ⊆ ( ( V × V ) ∪ { ∅ } ) |
| 11 |
5 10
|
sstri |
⊢ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( ( V × V ) ∪ { ∅ } ) |
| 12 |
3 11
|
sstri |
⊢ dom ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( ( V × V ) ∪ { ∅ } ) |
| 13 |
2 12
|
eqsstri |
⊢ dom tpos 𝐹 ⊆ ( ( V × V ) ∪ { ∅ } ) |