Metamath Proof Explorer


Theorem dmtposss

Description: The domain of tpos F is a subset. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion dmtposss dom tpos 𝐹 ⊆ ( ( V × V ) ∪ { ∅ } )

Proof

Step Hyp Ref Expression
1 df-tpos tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )
2 1 dmeqi dom tpos 𝐹 = dom ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) )
3 dmcoss dom ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) ⊆ dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } )
4 eqid ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) = ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } )
5 4 dmmptss dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ⊆ ( dom 𝐹 ∪ { ∅ } )
6 relcnv Rel dom 𝐹
7 df-rel ( Rel dom 𝐹 dom 𝐹 ⊆ ( V × V ) )
8 6 7 mpbi dom 𝐹 ⊆ ( V × V )
9 unss1 ( dom 𝐹 ⊆ ( V × V ) → ( dom 𝐹 ∪ { ∅ } ) ⊆ ( ( V × V ) ∪ { ∅ } ) )
10 8 9 ax-mp ( dom 𝐹 ∪ { ∅ } ) ⊆ ( ( V × V ) ∪ { ∅ } )
11 5 10 sstri dom ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ⊆ ( ( V × V ) ∪ { ∅ } )
12 3 11 sstri dom ( 𝐹 ∘ ( 𝑥 ∈ ( dom 𝐹 ∪ { ∅ } ) ↦ { 𝑥 } ) ) ⊆ ( ( V × V ) ∪ { ∅ } )
13 2 12 eqsstri dom tpos 𝐹 ⊆ ( ( V × V ) ∪ { ∅ } )