Metamath Proof Explorer


Theorem dftpos6

Description: Alternate definition of tpos . The second half of the right hand side could apply ressn and become ` ( F |`{ (/) } ) (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion dftpos6
|- tpos F = ( ( F o. ( x e. `' dom F |-> U. `' { x } ) ) u. ( { (/) } X. ( F " { (/) } ) ) )

Proof

Step Hyp Ref Expression
1 dftpos5
 |-  tpos F = ( F o. ( ( x e. `' dom F |-> U. `' { x } ) u. { <. (/) , (/) >. } ) )
2 coundi
 |-  ( F o. ( ( x e. `' dom F |-> U. `' { x } ) u. { <. (/) , (/) >. } ) ) = ( ( F o. ( x e. `' dom F |-> U. `' { x } ) ) u. ( F o. { <. (/) , (/) >. } ) )
3 0ex
 |-  (/) e. _V
4 3 3 cosni
 |-  ( F o. { <. (/) , (/) >. } ) = ( { (/) } X. ( F " { (/) } ) )
5 4 uneq2i
 |-  ( ( F o. ( x e. `' dom F |-> U. `' { x } ) ) u. ( F o. { <. (/) , (/) >. } ) ) = ( ( F o. ( x e. `' dom F |-> U. `' { x } ) ) u. ( { (/) } X. ( F " { (/) } ) ) )
6 1 2 5 3eqtri
 |-  tpos F = ( ( F o. ( x e. `' dom F |-> U. `' { x } ) ) u. ( { (/) } X. ( F " { (/) } ) ) )