| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relres |
|- Rel ( tpos F |` { (/) } ) |
| 2 |
|
relres |
|- Rel ( F |` { (/) } ) |
| 3 |
|
velsn |
|- ( x e. { (/) } <-> x = (/) ) |
| 4 |
|
brtpos0 |
|- ( y e. _V -> ( (/) tpos F y <-> (/) F y ) ) |
| 5 |
4
|
elv |
|- ( (/) tpos F y <-> (/) F y ) |
| 6 |
|
breq1 |
|- ( x = (/) -> ( x tpos F y <-> (/) tpos F y ) ) |
| 7 |
|
breq1 |
|- ( x = (/) -> ( x F y <-> (/) F y ) ) |
| 8 |
6 7
|
bibi12d |
|- ( x = (/) -> ( ( x tpos F y <-> x F y ) <-> ( (/) tpos F y <-> (/) F y ) ) ) |
| 9 |
5 8
|
mpbiri |
|- ( x = (/) -> ( x tpos F y <-> x F y ) ) |
| 10 |
3 9
|
sylbi |
|- ( x e. { (/) } -> ( x tpos F y <-> x F y ) ) |
| 11 |
10
|
pm5.32i |
|- ( ( x e. { (/) } /\ x tpos F y ) <-> ( x e. { (/) } /\ x F y ) ) |
| 12 |
|
vex |
|- y e. _V |
| 13 |
12
|
brresi |
|- ( x ( tpos F |` { (/) } ) y <-> ( x e. { (/) } /\ x tpos F y ) ) |
| 14 |
12
|
brresi |
|- ( x ( F |` { (/) } ) y <-> ( x e. { (/) } /\ x F y ) ) |
| 15 |
11 13 14
|
3bitr4i |
|- ( x ( tpos F |` { (/) } ) y <-> x ( F |` { (/) } ) y ) |
| 16 |
1 2 15
|
eqbrriv |
|- ( tpos F |` { (/) } ) = ( F |` { (/) } ) |