Metamath Proof Explorer


Theorem tposres0

Description: The transposition of a set restricted to the empty set is the set restricted to the empty set. See also ressn and dftpos6 for an alternate proof. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposres0
|- ( tpos F |` { (/) } ) = ( F |` { (/) } )

Proof

Step Hyp Ref Expression
1 relres
 |-  Rel ( tpos F |` { (/) } )
2 relres
 |-  Rel ( F |` { (/) } )
3 velsn
 |-  ( x e. { (/) } <-> x = (/) )
4 brtpos0
 |-  ( y e. _V -> ( (/) tpos F y <-> (/) F y ) )
5 4 elv
 |-  ( (/) tpos F y <-> (/) F y )
6 breq1
 |-  ( x = (/) -> ( x tpos F y <-> (/) tpos F y ) )
7 breq1
 |-  ( x = (/) -> ( x F y <-> (/) F y ) )
8 6 7 bibi12d
 |-  ( x = (/) -> ( ( x tpos F y <-> x F y ) <-> ( (/) tpos F y <-> (/) F y ) ) )
9 5 8 mpbiri
 |-  ( x = (/) -> ( x tpos F y <-> x F y ) )
10 3 9 sylbi
 |-  ( x e. { (/) } -> ( x tpos F y <-> x F y ) )
11 10 pm5.32i
 |-  ( ( x e. { (/) } /\ x tpos F y ) <-> ( x e. { (/) } /\ x F y ) )
12 vex
 |-  y e. _V
13 12 brresi
 |-  ( x ( tpos F |` { (/) } ) y <-> ( x e. { (/) } /\ x tpos F y ) )
14 12 brresi
 |-  ( x ( F |` { (/) } ) y <-> ( x e. { (/) } /\ x F y ) )
15 11 13 14 3bitr4i
 |-  ( x ( tpos F |` { (/) } ) y <-> x ( F |` { (/) } ) y )
16 1 2 15 eqbrriv
 |-  ( tpos F |` { (/) } ) = ( F |` { (/) } )