Metamath Proof Explorer


Theorem tposres2

Description: The transposition restricted to a set. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Hypothesis tposres2.1 φ ¬ dom F R
Assertion tposres2 φ tpos F R = tpos F R -1 -1

Proof

Step Hyp Ref Expression
1 tposres2.1 φ ¬ dom F R
2 tposresg tpos F R = tpos F R -1 -1 F R
3 resinsn F R = ¬ dom F R
4 1 3 sylibr φ F R =
5 4 uneq2d φ tpos F R -1 -1 F R = tpos F R -1 -1
6 2 5 eqtrid φ tpos F R = tpos F R -1 -1
7 un0 tpos F R -1 -1 = tpos F R -1 -1
8 6 7 eqtrdi φ tpos F R = tpos F R -1 -1