Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Union
Function transposition
tposres2
Next ⟩
tposres3
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposres2
Description:
The transposition restricted to a set.
(Contributed by
Zhi Wang
, 6-Oct-2025)
Ref
Expression
Hypothesis
tposres2.1
⊢
φ
→
¬
∅
∈
dom
⁡
F
∩
R
Assertion
tposres2
⊢
φ
→
tpos
F
↾
R
=
tpos
F
↾
R
-1
-1
Proof
Step
Hyp
Ref
Expression
1
tposres2.1
⊢
φ
→
¬
∅
∈
dom
⁡
F
∩
R
2
tposresg
⊢
tpos
F
↾
R
=
tpos
F
↾
R
-1
-1
∪
F
↾
R
∩
∅
3
resinsn
⊢
F
↾
R
∩
∅
=
∅
↔
¬
∅
∈
dom
⁡
F
∩
R
4
1
3
sylibr
⊢
φ
→
F
↾
R
∩
∅
=
∅
5
4
uneq2d
⊢
φ
→
tpos
F
↾
R
-1
-1
∪
F
↾
R
∩
∅
=
tpos
F
↾
R
-1
-1
∪
∅
6
2
5
eqtrid
⊢
φ
→
tpos
F
↾
R
=
tpos
F
↾
R
-1
-1
∪
∅
7
un0
⊢
tpos
F
↾
R
-1
-1
∪
∅
=
tpos
F
↾
R
-1
-1
8
6
7
eqtrdi
⊢
φ
→
tpos
F
↾
R
=
tpos
F
↾
R
-1
-1