| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposres2.1 |
|- ( ph -> -. (/) e. ( dom F i^i R ) ) |
| 2 |
1
|
tposres2 |
|- ( ph -> ( tpos F |` R ) = ( tpos F |` `' `' R ) ) |
| 3 |
|
relcnv |
|- Rel `' dom ( F |` `' R ) |
| 4 |
|
cnvf1o |
|- ( Rel `' dom ( F |` `' R ) -> ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) : `' dom ( F |` `' R ) -1-1-onto-> `' `' dom ( F |` `' R ) ) |
| 5 |
3 4
|
ax-mp |
|- ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) : `' dom ( F |` `' R ) -1-1-onto-> `' `' dom ( F |` `' R ) |
| 6 |
|
f1ofo |
|- ( ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) : `' dom ( F |` `' R ) -1-1-onto-> `' `' dom ( F |` `' R ) -> ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) : `' dom ( F |` `' R ) -onto-> `' `' dom ( F |` `' R ) ) |
| 7 |
5 6
|
ax-mp |
|- ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) : `' dom ( F |` `' R ) -onto-> `' `' dom ( F |` `' R ) |
| 8 |
|
forn |
|- ( ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) : `' dom ( F |` `' R ) -onto-> `' `' dom ( F |` `' R ) -> ran ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) = `' `' dom ( F |` `' R ) ) |
| 9 |
7 8
|
ax-mp |
|- ran ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) = `' `' dom ( F |` `' R ) |
| 10 |
|
cnvcnvss |
|- `' `' dom ( F |` `' R ) C_ dom ( F |` `' R ) |
| 11 |
|
resdmss |
|- dom ( F |` `' R ) C_ `' R |
| 12 |
10 11
|
sstri |
|- `' `' dom ( F |` `' R ) C_ `' R |
| 13 |
9 12
|
eqsstri |
|- ran ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) C_ `' R |
| 14 |
|
cores |
|- ( ran ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) C_ `' R -> ( ( F |` `' R ) o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) = ( F o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) ) |
| 15 |
13 14
|
ax-mp |
|- ( ( F |` `' R ) o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) = ( F o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) |
| 16 |
|
dftpos6 |
|- tpos ( F |` `' R ) = ( ( ( F |` `' R ) o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) u. ( { (/) } X. ( ( F |` `' R ) " { (/) } ) ) ) |
| 17 |
|
ressn |
|- ( ( F |` `' R ) |` { (/) } ) = ( { (/) } X. ( ( F |` `' R ) " { (/) } ) ) |
| 18 |
|
resres |
|- ( ( F |` `' R ) |` { (/) } ) = ( F |` ( `' R i^i { (/) } ) ) |
| 19 |
|
relcnv |
|- Rel `' R |
| 20 |
|
0nelrel0 |
|- ( Rel `' R -> -. (/) e. `' R ) |
| 21 |
19 20
|
ax-mp |
|- -. (/) e. `' R |
| 22 |
|
disjsn |
|- ( ( `' R i^i { (/) } ) = (/) <-> -. (/) e. `' R ) |
| 23 |
21 22
|
mpbir |
|- ( `' R i^i { (/) } ) = (/) |
| 24 |
23
|
reseq2i |
|- ( F |` ( `' R i^i { (/) } ) ) = ( F |` (/) ) |
| 25 |
|
res0 |
|- ( F |` (/) ) = (/) |
| 26 |
18 24 25
|
3eqtri |
|- ( ( F |` `' R ) |` { (/) } ) = (/) |
| 27 |
17 26
|
eqtr3i |
|- ( { (/) } X. ( ( F |` `' R ) " { (/) } ) ) = (/) |
| 28 |
27
|
uneq2i |
|- ( ( ( F |` `' R ) o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) u. ( { (/) } X. ( ( F |` `' R ) " { (/) } ) ) ) = ( ( ( F |` `' R ) o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) u. (/) ) |
| 29 |
|
un0 |
|- ( ( ( F |` `' R ) o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) u. (/) ) = ( ( F |` `' R ) o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) |
| 30 |
16 28 29
|
3eqtri |
|- tpos ( F |` `' R ) = ( ( F |` `' R ) o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) |
| 31 |
|
tposrescnv |
|- ( tpos F |` `' `' R ) = ( F o. ( x e. `' dom ( F |` `' R ) |-> U. `' { x } ) ) |
| 32 |
15 30 31
|
3eqtr4ri |
|- ( tpos F |` `' `' R ) = tpos ( F |` `' R ) |
| 33 |
2 32
|
eqtrdi |
|- ( ph -> ( tpos F |` R ) = tpos ( F |` `' R ) ) |