Description: The transposition restricted to a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposresxp | ⊢ ( tpos 𝐹 ↾ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ↾ ( 𝐵 × 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | ⊢ Rel ( 𝐴 × 𝐵 ) | |
| 2 | tposres | ⊢ ( Rel ( 𝐴 × 𝐵 ) → ( tpos 𝐹 ↾ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ↾ ◡ ( 𝐴 × 𝐵 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( tpos 𝐹 ↾ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ↾ ◡ ( 𝐴 × 𝐵 ) ) |
| 4 | cnvxp | ⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) | |
| 5 | 4 | reseq2i | ⊢ ( 𝐹 ↾ ◡ ( 𝐴 × 𝐵 ) ) = ( 𝐹 ↾ ( 𝐵 × 𝐴 ) ) |
| 6 | 5 | tposeqi | ⊢ tpos ( 𝐹 ↾ ◡ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ↾ ( 𝐵 × 𝐴 ) ) |
| 7 | 3 6 | eqtri | ⊢ ( tpos 𝐹 ↾ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ↾ ( 𝐵 × 𝐴 ) ) |