Metamath Proof Explorer


Theorem tposresxp

Description: The transposition restricted to a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposresxp ( tpos 𝐹 ↾ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ↾ ( 𝐵 × 𝐴 ) )

Proof

Step Hyp Ref Expression
1 relxp Rel ( 𝐴 × 𝐵 )
2 tposres ( Rel ( 𝐴 × 𝐵 ) → ( tpos 𝐹 ↾ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ( 𝐴 × 𝐵 ) ) )
3 1 2 ax-mp ( tpos 𝐹 ↾ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ( 𝐴 × 𝐵 ) )
4 cnvxp ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 )
5 4 reseq2i ( 𝐹 ( 𝐴 × 𝐵 ) ) = ( 𝐹 ↾ ( 𝐵 × 𝐴 ) )
6 5 tposeqi tpos ( 𝐹 ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ↾ ( 𝐵 × 𝐴 ) )
7 3 6 eqtri ( tpos 𝐹 ↾ ( 𝐴 × 𝐵 ) ) = tpos ( 𝐹 ↾ ( 𝐵 × 𝐴 ) )