| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relxp |
⊢ Rel ( 𝐴 × 𝐵 ) |
| 2 |
|
tposf1o2 |
⊢ ( Rel ( 𝐴 × 𝐵 ) → ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ 𝐶 → tpos 𝐹 : ◡ ( 𝐴 × 𝐵 ) –1-1-onto→ 𝐶 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ 𝐶 → tpos 𝐹 : ◡ ( 𝐴 × 𝐵 ) –1-1-onto→ 𝐶 ) |
| 4 |
|
cnvxp |
⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) |
| 5 |
|
f1oeq2 |
⊢ ( ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) → ( tpos 𝐹 : ◡ ( 𝐴 × 𝐵 ) –1-1-onto→ 𝐶 ↔ tpos 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ 𝐶 ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( tpos 𝐹 : ◡ ( 𝐴 × 𝐵 ) –1-1-onto→ 𝐶 ↔ tpos 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ 𝐶 ) |
| 7 |
3 6
|
sylib |
⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ 𝐶 → tpos 𝐹 : ( 𝐵 × 𝐴 ) –1-1-onto→ 𝐶 ) |