| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relxp |
|- Rel ( A X. B ) |
| 2 |
|
tposf1o2 |
|- ( Rel ( A X. B ) -> ( F : ( A X. B ) -1-1-onto-> C -> tpos F : `' ( A X. B ) -1-1-onto-> C ) ) |
| 3 |
1 2
|
ax-mp |
|- ( F : ( A X. B ) -1-1-onto-> C -> tpos F : `' ( A X. B ) -1-1-onto-> C ) |
| 4 |
|
cnvxp |
|- `' ( A X. B ) = ( B X. A ) |
| 5 |
|
f1oeq2 |
|- ( `' ( A X. B ) = ( B X. A ) -> ( tpos F : `' ( A X. B ) -1-1-onto-> C <-> tpos F : ( B X. A ) -1-1-onto-> C ) ) |
| 6 |
4 5
|
ax-mp |
|- ( tpos F : `' ( A X. B ) -1-1-onto-> C <-> tpos F : ( B X. A ) -1-1-onto-> C ) |
| 7 |
3 6
|
sylib |
|- ( F : ( A X. B ) -1-1-onto-> C -> tpos F : ( B X. A ) -1-1-onto-> C ) |