Metamath Proof Explorer


Theorem tposf1o

Description: Condition of a bijective transposition. (Contributed by Zhi Wang, 5-Oct-2025)

Ref Expression
Assertion tposf1o F : A × B 1-1 onto C tpos F : B × A 1-1 onto C

Proof

Step Hyp Ref Expression
1 relxp Rel A × B
2 tposf1o2 Rel A × B F : A × B 1-1 onto C tpos F : A × B -1 1-1 onto C
3 1 2 ax-mp F : A × B 1-1 onto C tpos F : A × B -1 1-1 onto C
4 cnvxp A × B -1 = B × A
5 f1oeq2 A × B -1 = B × A tpos F : A × B -1 1-1 onto C tpos F : B × A 1-1 onto C
6 4 5 ax-mp tpos F : A × B -1 1-1 onto C tpos F : B × A 1-1 onto C
7 3 6 sylib F : A × B 1-1 onto C tpos F : B × A 1-1 onto C