Metamath Proof Explorer


Theorem tposid

Description: Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025)

Ref Expression
Assertion tposid X tpos I Y = Y X

Proof

Step Hyp Ref Expression
1 ovtpos X tpos I Y = Y I X
2 df-ov Y I X = I Y X
3 opex Y X V
4 fvi Y X V I Y X = Y X
5 3 4 ax-mp I Y X = Y X
6 1 2 5 3eqtri X tpos I Y = Y X