Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
ZF Set Theory - add the Axiom of Union
Function transposition
tposidres
Next ⟩
tposidf1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
tposidres
Description:
Swap an ordered pair.
(Contributed by
Zhi Wang
, 5-Oct-2025)
Ref
Expression
Hypotheses
tposidres.x
⊢
φ
→
X
∈
A
tposidres.y
⊢
φ
→
Y
∈
B
Assertion
tposidres
⊢
φ
→
Y
tpos
I
↾
A
×
B
X
=
X
Y
Proof
Step
Hyp
Ref
Expression
1
tposidres.x
⊢
φ
→
X
∈
A
2
tposidres.y
⊢
φ
→
Y
∈
B
3
ovtpos
⊢
Y
tpos
I
↾
A
×
B
X
=
X
I
↾
A
×
B
Y
4
df-ov
⊢
X
I
↾
A
×
B
Y
=
I
↾
A
×
B
⁡
X
Y
5
3
4
eqtri
⊢
Y
tpos
I
↾
A
×
B
X
=
I
↾
A
×
B
⁡
X
Y
6
1
2
opelxpd
⊢
φ
→
X
Y
∈
A
×
B
7
6
fvresd
⊢
φ
→
I
↾
A
×
B
⁡
X
Y
=
I
⁡
X
Y
8
5
7
eqtrid
⊢
φ
→
Y
tpos
I
↾
A
×
B
X
=
I
⁡
X
Y
9
opex
⊢
X
Y
∈
V
10
fvi
⊢
X
Y
∈
V
→
I
⁡
X
Y
=
X
Y
11
9
10
ax-mp
⊢
I
⁡
X
Y
=
X
Y
12
8
11
eqtrdi
⊢
φ
→
Y
tpos
I
↾
A
×
B
X
=
X
Y