Metamath Proof Explorer


Theorem tposidres

Description: Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025)

Ref Expression
Hypotheses tposidres.x ( 𝜑𝑋𝐴 )
tposidres.y ( 𝜑𝑌𝐵 )
Assertion tposidres ( 𝜑 → ( 𝑌 tpos ( I ↾ ( 𝐴 × 𝐵 ) ) 𝑋 ) = ⟨ 𝑋 , 𝑌 ⟩ )

Proof

Step Hyp Ref Expression
1 tposidres.x ( 𝜑𝑋𝐴 )
2 tposidres.y ( 𝜑𝑌𝐵 )
3 ovtpos ( 𝑌 tpos ( I ↾ ( 𝐴 × 𝐵 ) ) 𝑋 ) = ( 𝑋 ( I ↾ ( 𝐴 × 𝐵 ) ) 𝑌 )
4 df-ov ( 𝑋 ( I ↾ ( 𝐴 × 𝐵 ) ) 𝑌 ) = ( ( I ↾ ( 𝐴 × 𝐵 ) ) ‘ ⟨ 𝑋 , 𝑌 ⟩ )
5 3 4 eqtri ( 𝑌 tpos ( I ↾ ( 𝐴 × 𝐵 ) ) 𝑋 ) = ( ( I ↾ ( 𝐴 × 𝐵 ) ) ‘ ⟨ 𝑋 , 𝑌 ⟩ )
6 1 2 opelxpd ( 𝜑 → ⟨ 𝑋 , 𝑌 ⟩ ∈ ( 𝐴 × 𝐵 ) )
7 6 fvresd ( 𝜑 → ( ( I ↾ ( 𝐴 × 𝐵 ) ) ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ( I ‘ ⟨ 𝑋 , 𝑌 ⟩ ) )
8 5 7 eqtrid ( 𝜑 → ( 𝑌 tpos ( I ↾ ( 𝐴 × 𝐵 ) ) 𝑋 ) = ( I ‘ ⟨ 𝑋 , 𝑌 ⟩ ) )
9 opex 𝑋 , 𝑌 ⟩ ∈ V
10 fvi ( ⟨ 𝑋 , 𝑌 ⟩ ∈ V → ( I ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ⟨ 𝑋 , 𝑌 ⟩ )
11 9 10 ax-mp ( I ‘ ⟨ 𝑋 , 𝑌 ⟩ ) = ⟨ 𝑋 , 𝑌
12 8 11 eqtrdi ( 𝜑 → ( 𝑌 tpos ( I ↾ ( 𝐴 × 𝐵 ) ) 𝑋 ) = ⟨ 𝑋 , 𝑌 ⟩ )