Metamath Proof Explorer
Description: The swap function, or the twisting map, is bijective. (Contributed by Zhi
Wang, 5-Oct-2025)
|
|
Ref |
Expression |
|
Assertion |
tposidf1o |
⊢ tpos ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1oi |
⊢ ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐴 × 𝐵 ) |
| 2 |
|
tposf1o |
⊢ ( ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐴 × 𝐵 ) → tpos ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ tpos ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) |