Metamath Proof Explorer


Theorem tposidf1o

Description: The swap function, or the twisting map, is bijective. (Contributed by Zhi Wang, 5-Oct-2025)

Ref Expression
Assertion tposidf1o tpos ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 )

Proof

Step Hyp Ref Expression
1 f1oi ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐴 × 𝐵 )
2 tposf1o ( ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐴 × 𝐵 ) → tpos ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 ) )
3 1 2 ax-mp tpos ( I ↾ ( 𝐴 × 𝐵 ) ) : ( 𝐵 × 𝐴 ) –1-1-onto→ ( 𝐴 × 𝐵 )