Metamath Proof Explorer


Theorem tposidf1o

Description: The swap function, or the twisting map, is bijective. (Contributed by Zhi Wang, 5-Oct-2025)

Ref Expression
Assertion tposidf1o
|- tpos ( _I |` ( A X. B ) ) : ( B X. A ) -1-1-onto-> ( A X. B )

Proof

Step Hyp Ref Expression
1 f1oi
 |-  ( _I |` ( A X. B ) ) : ( A X. B ) -1-1-onto-> ( A X. B )
2 tposf1o
 |-  ( ( _I |` ( A X. B ) ) : ( A X. B ) -1-1-onto-> ( A X. B ) -> tpos ( _I |` ( A X. B ) ) : ( B X. A ) -1-1-onto-> ( A X. B ) )
3 1 2 ax-mp
 |-  tpos ( _I |` ( A X. B ) ) : ( B X. A ) -1-1-onto-> ( A X. B )