Metamath Proof Explorer


Theorem tposidres

Description: Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025)

Ref Expression
Hypotheses tposidres.x
|- ( ph -> X e. A )
tposidres.y
|- ( ph -> Y e. B )
Assertion tposidres
|- ( ph -> ( Y tpos ( _I |` ( A X. B ) ) X ) = <. X , Y >. )

Proof

Step Hyp Ref Expression
1 tposidres.x
 |-  ( ph -> X e. A )
2 tposidres.y
 |-  ( ph -> Y e. B )
3 ovtpos
 |-  ( Y tpos ( _I |` ( A X. B ) ) X ) = ( X ( _I |` ( A X. B ) ) Y )
4 df-ov
 |-  ( X ( _I |` ( A X. B ) ) Y ) = ( ( _I |` ( A X. B ) ) ` <. X , Y >. )
5 3 4 eqtri
 |-  ( Y tpos ( _I |` ( A X. B ) ) X ) = ( ( _I |` ( A X. B ) ) ` <. X , Y >. )
6 1 2 opelxpd
 |-  ( ph -> <. X , Y >. e. ( A X. B ) )
7 6 fvresd
 |-  ( ph -> ( ( _I |` ( A X. B ) ) ` <. X , Y >. ) = ( _I ` <. X , Y >. ) )
8 5 7 eqtrid
 |-  ( ph -> ( Y tpos ( _I |` ( A X. B ) ) X ) = ( _I ` <. X , Y >. ) )
9 opex
 |-  <. X , Y >. e. _V
10 fvi
 |-  ( <. X , Y >. e. _V -> ( _I ` <. X , Y >. ) = <. X , Y >. )
11 9 10 ax-mp
 |-  ( _I ` <. X , Y >. ) = <. X , Y >.
12 8 11 eqtrdi
 |-  ( ph -> ( Y tpos ( _I |` ( A X. B ) ) X ) = <. X , Y >. )