| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tposidres.x |
|- ( ph -> X e. A ) |
| 2 |
|
tposidres.y |
|- ( ph -> Y e. B ) |
| 3 |
|
ovtpos |
|- ( Y tpos ( _I |` ( A X. B ) ) X ) = ( X ( _I |` ( A X. B ) ) Y ) |
| 4 |
|
df-ov |
|- ( X ( _I |` ( A X. B ) ) Y ) = ( ( _I |` ( A X. B ) ) ` <. X , Y >. ) |
| 5 |
3 4
|
eqtri |
|- ( Y tpos ( _I |` ( A X. B ) ) X ) = ( ( _I |` ( A X. B ) ) ` <. X , Y >. ) |
| 6 |
1 2
|
opelxpd |
|- ( ph -> <. X , Y >. e. ( A X. B ) ) |
| 7 |
6
|
fvresd |
|- ( ph -> ( ( _I |` ( A X. B ) ) ` <. X , Y >. ) = ( _I ` <. X , Y >. ) ) |
| 8 |
5 7
|
eqtrid |
|- ( ph -> ( Y tpos ( _I |` ( A X. B ) ) X ) = ( _I ` <. X , Y >. ) ) |
| 9 |
|
opex |
|- <. X , Y >. e. _V |
| 10 |
|
fvi |
|- ( <. X , Y >. e. _V -> ( _I ` <. X , Y >. ) = <. X , Y >. ) |
| 11 |
9 10
|
ax-mp |
|- ( _I ` <. X , Y >. ) = <. X , Y >. |
| 12 |
8 11
|
eqtrdi |
|- ( ph -> ( Y tpos ( _I |` ( A X. B ) ) X ) = <. X , Y >. ) |