Metamath Proof Explorer


Theorem tposid

Description: Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025)

Ref Expression
Assertion tposid ( 𝑋 tpos I 𝑌 ) = ⟨ 𝑌 , 𝑋

Proof

Step Hyp Ref Expression
1 ovtpos ( 𝑋 tpos I 𝑌 ) = ( 𝑌 I 𝑋 )
2 df-ov ( 𝑌 I 𝑋 ) = ( I ‘ ⟨ 𝑌 , 𝑋 ⟩ )
3 opex 𝑌 , 𝑋 ⟩ ∈ V
4 fvi ( ⟨ 𝑌 , 𝑋 ⟩ ∈ V → ( I ‘ ⟨ 𝑌 , 𝑋 ⟩ ) = ⟨ 𝑌 , 𝑋 ⟩ )
5 3 4 ax-mp ( I ‘ ⟨ 𝑌 , 𝑋 ⟩ ) = ⟨ 𝑌 , 𝑋
6 1 2 5 3eqtri ( 𝑋 tpos I 𝑌 ) = ⟨ 𝑌 , 𝑋