Metamath Proof Explorer


Theorem tposid

Description: Swap an ordered pair. (Contributed by Zhi Wang, 5-Oct-2025)

Ref Expression
Assertion tposid
|- ( X tpos _I Y ) = <. Y , X >.

Proof

Step Hyp Ref Expression
1 ovtpos
 |-  ( X tpos _I Y ) = ( Y _I X )
2 df-ov
 |-  ( Y _I X ) = ( _I ` <. Y , X >. )
3 opex
 |-  <. Y , X >. e. _V
4 fvi
 |-  ( <. Y , X >. e. _V -> ( _I ` <. Y , X >. ) = <. Y , X >. )
5 3 4 ax-mp
 |-  ( _I ` <. Y , X >. ) = <. Y , X >.
6 1 2 5 3eqtri
 |-  ( X tpos _I Y ) = <. Y , X >.