Description: The transposition restricted to a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposresxp | |- ( tpos F |` ( A X. B ) ) = tpos ( F |` ( B X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp | |- Rel ( A X. B ) |
|
| 2 | tposres | |- ( Rel ( A X. B ) -> ( tpos F |` ( A X. B ) ) = tpos ( F |` `' ( A X. B ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( tpos F |` ( A X. B ) ) = tpos ( F |` `' ( A X. B ) ) |
| 4 | cnvxp | |- `' ( A X. B ) = ( B X. A ) |
|
| 5 | 4 | reseq2i | |- ( F |` `' ( A X. B ) ) = ( F |` ( B X. A ) ) |
| 6 | 5 | tposeqi | |- tpos ( F |` `' ( A X. B ) ) = tpos ( F |` ( B X. A ) ) |
| 7 | 3 6 | eqtri | |- ( tpos F |` ( A X. B ) ) = tpos ( F |` ( B X. A ) ) |