Metamath Proof Explorer


Theorem tposresxp

Description: The transposition restricted to a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion tposresxp
|- ( tpos F |` ( A X. B ) ) = tpos ( F |` ( B X. A ) )

Proof

Step Hyp Ref Expression
1 relxp
 |-  Rel ( A X. B )
2 tposres
 |-  ( Rel ( A X. B ) -> ( tpos F |` ( A X. B ) ) = tpos ( F |` `' ( A X. B ) ) )
3 1 2 ax-mp
 |-  ( tpos F |` ( A X. B ) ) = tpos ( F |` `' ( A X. B ) )
4 cnvxp
 |-  `' ( A X. B ) = ( B X. A )
5 4 reseq2i
 |-  ( F |` `' ( A X. B ) ) = ( F |` ( B X. A ) )
6 5 tposeqi
 |-  tpos ( F |` `' ( A X. B ) ) = tpos ( F |` ( B X. A ) )
7 3 6 eqtri
 |-  ( tpos F |` ( A X. B ) ) = tpos ( F |` ( B X. A ) )