Metamath Proof Explorer


Theorem tpostpos2

Description: Value of the double transposition for a relation on triples. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion tpostpos2 RelFReldomFtpostposF=F

Proof

Step Hyp Ref Expression
1 tpostpos tpostposF=FV×V×V
2 relrelss RelFReldomFFV×V×V
3 ssun1 V×VV×V
4 xpss1 V×VV×VV×V×VV×V×V
5 3 4 ax-mp V×V×VV×V×V
6 sstr FV×V×VV×V×VV×V×VFV×V×V
7 5 6 mpan2 FV×V×VFV×V×V
8 2 7 sylbi RelFReldomFFV×V×V
9 df-ss FV×V×VFV×V×V=F
10 8 9 sylib RelFReldomFFV×V×V=F
11 1 10 eqtrid RelFReldomFtpostposF=F