Metamath Proof Explorer


Theorem tpss

Description: An unordered triple of elements of a class is a subset of the class. (Contributed by NM, 9-Apr-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Hypotheses tpss.1 AV
tpss.2 BV
tpss.3 CV
Assertion tpss ADBDCDABCD

Proof

Step Hyp Ref Expression
1 tpss.1 AV
2 tpss.2 BV
3 tpss.3 CV
4 unss ABDCDABCD
5 df-3an ADBDCDADBDCD
6 1 2 prss ADBDABD
7 3 snss CDCD
8 6 7 anbi12i ADBDCDABDCD
9 5 8 bitri ADBDCDABDCD
10 df-tp ABC=ABC
11 10 sseq1i ABCDABCD
12 4 9 11 3bitr4i ADBDCDABCD