Metamath Proof Explorer


Theorem trficl

Description: The class of all transitive relations has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)

Ref Expression
Hypothesis trficl.a A = z | z z z
Assertion trficl x A y A x y A

Proof

Step Hyp Ref Expression
1 trficl.a A = z | z z z
2 vex x V
3 2 inex1 x y V
4 id z = x y z = x y
5 4 4 coeq12d z = x y z z = x y x y
6 5 4 sseq12d z = x y z z z x y x y x y
7 id z = x z = x
8 7 7 coeq12d z = x z z = x x
9 8 7 sseq12d z = x z z z x x x
10 id z = y z = y
11 10 10 coeq12d z = y z z = y y
12 11 10 sseq12d z = y z z z y y y
13 trin2 x x x y y y x y x y x y
14 1 3 6 9 12 13 cllem0 x A y A x y A