| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trficl.a |
⊢ 𝐴 = { 𝑧 ∣ ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 } |
| 2 |
|
vex |
⊢ 𝑥 ∈ V |
| 3 |
2
|
inex1 |
⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
| 4 |
|
id |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → 𝑧 = ( 𝑥 ∩ 𝑦 ) ) |
| 5 |
4 4
|
coeq12d |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ∘ 𝑧 ) = ( ( 𝑥 ∩ 𝑦 ) ∘ ( 𝑥 ∩ 𝑦 ) ) ) |
| 6 |
5 4
|
sseq12d |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( ( 𝑥 ∩ 𝑦 ) ∘ ( 𝑥 ∩ 𝑦 ) ) ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 7 |
|
id |
⊢ ( 𝑧 = 𝑥 → 𝑧 = 𝑥 ) |
| 8 |
7 7
|
coeq12d |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 ∘ 𝑧 ) = ( 𝑥 ∘ 𝑥 ) ) |
| 9 |
8 7
|
sseq12d |
⊢ ( 𝑧 = 𝑥 → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ) ) |
| 10 |
|
id |
⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) |
| 11 |
10 10
|
coeq12d |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∘ 𝑧 ) = ( 𝑦 ∘ 𝑦 ) ) |
| 12 |
11 10
|
sseq12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∘ 𝑧 ) ⊆ 𝑧 ↔ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) ) |
| 13 |
|
trin2 |
⊢ ( ( ( 𝑥 ∘ 𝑥 ) ⊆ 𝑥 ∧ ( 𝑦 ∘ 𝑦 ) ⊆ 𝑦 ) → ( ( 𝑥 ∩ 𝑦 ) ∘ ( 𝑥 ∩ 𝑦 ) ) ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 14 |
1 3 6 9 12 13
|
cllem0 |
⊢ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 |