| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trficl.a | ⊢ 𝐴  =  { 𝑧  ∣  ( 𝑧  ∘  𝑧 )  ⊆  𝑧 } | 
						
							| 2 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 3 | 2 | inex1 | ⊢ ( 𝑥  ∩  𝑦 )  ∈  V | 
						
							| 4 |  | id | ⊢ ( 𝑧  =  ( 𝑥  ∩  𝑦 )  →  𝑧  =  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 5 | 4 4 | coeq12d | ⊢ ( 𝑧  =  ( 𝑥  ∩  𝑦 )  →  ( 𝑧  ∘  𝑧 )  =  ( ( 𝑥  ∩  𝑦 )  ∘  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 6 | 5 4 | sseq12d | ⊢ ( 𝑧  =  ( 𝑥  ∩  𝑦 )  →  ( ( 𝑧  ∘  𝑧 )  ⊆  𝑧  ↔  ( ( 𝑥  ∩  𝑦 )  ∘  ( 𝑥  ∩  𝑦 ) )  ⊆  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑧  =  𝑥  →  𝑧  =  𝑥 ) | 
						
							| 8 | 7 7 | coeq12d | ⊢ ( 𝑧  =  𝑥  →  ( 𝑧  ∘  𝑧 )  =  ( 𝑥  ∘  𝑥 ) ) | 
						
							| 9 | 8 7 | sseq12d | ⊢ ( 𝑧  =  𝑥  →  ( ( 𝑧  ∘  𝑧 )  ⊆  𝑧  ↔  ( 𝑥  ∘  𝑥 )  ⊆  𝑥 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝑧  =  𝑦  →  𝑧  =  𝑦 ) | 
						
							| 11 | 10 10 | coeq12d | ⊢ ( 𝑧  =  𝑦  →  ( 𝑧  ∘  𝑧 )  =  ( 𝑦  ∘  𝑦 ) ) | 
						
							| 12 | 11 10 | sseq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑧  ∘  𝑧 )  ⊆  𝑧  ↔  ( 𝑦  ∘  𝑦 )  ⊆  𝑦 ) ) | 
						
							| 13 |  | trin2 | ⊢ ( ( ( 𝑥  ∘  𝑥 )  ⊆  𝑥  ∧  ( 𝑦  ∘  𝑦 )  ⊆  𝑦 )  →  ( ( 𝑥  ∩  𝑦 )  ∘  ( 𝑥  ∩  𝑦 ) )  ⊆  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 14 | 1 3 6 9 12 13 | cllem0 | ⊢ ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( 𝑥  ∩  𝑦 )  ∈  𝐴 |