| Step | Hyp | Ref | Expression | 
						
							| 1 |  | trficl.a |  |-  A = { z | ( z o. z ) C_ z } | 
						
							| 2 |  | vex |  |-  x e. _V | 
						
							| 3 | 2 | inex1 |  |-  ( x i^i y ) e. _V | 
						
							| 4 |  | id |  |-  ( z = ( x i^i y ) -> z = ( x i^i y ) ) | 
						
							| 5 | 4 4 | coeq12d |  |-  ( z = ( x i^i y ) -> ( z o. z ) = ( ( x i^i y ) o. ( x i^i y ) ) ) | 
						
							| 6 | 5 4 | sseq12d |  |-  ( z = ( x i^i y ) -> ( ( z o. z ) C_ z <-> ( ( x i^i y ) o. ( x i^i y ) ) C_ ( x i^i y ) ) ) | 
						
							| 7 |  | id |  |-  ( z = x -> z = x ) | 
						
							| 8 | 7 7 | coeq12d |  |-  ( z = x -> ( z o. z ) = ( x o. x ) ) | 
						
							| 9 | 8 7 | sseq12d |  |-  ( z = x -> ( ( z o. z ) C_ z <-> ( x o. x ) C_ x ) ) | 
						
							| 10 |  | id |  |-  ( z = y -> z = y ) | 
						
							| 11 | 10 10 | coeq12d |  |-  ( z = y -> ( z o. z ) = ( y o. y ) ) | 
						
							| 12 | 11 10 | sseq12d |  |-  ( z = y -> ( ( z o. z ) C_ z <-> ( y o. y ) C_ y ) ) | 
						
							| 13 |  | trin2 |  |-  ( ( ( x o. x ) C_ x /\ ( y o. y ) C_ y ) -> ( ( x i^i y ) o. ( x i^i y ) ) C_ ( x i^i y ) ) | 
						
							| 14 | 1 3 6 9 12 13 | cllem0 |  |-  A. x e. A A. y e. A ( x i^i y ) e. A |