| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trficl.a |
|- A = { z | ( z o. z ) C_ z } |
| 2 |
|
vex |
|- x e. _V |
| 3 |
2
|
inex1 |
|- ( x i^i y ) e. _V |
| 4 |
|
id |
|- ( z = ( x i^i y ) -> z = ( x i^i y ) ) |
| 5 |
4 4
|
coeq12d |
|- ( z = ( x i^i y ) -> ( z o. z ) = ( ( x i^i y ) o. ( x i^i y ) ) ) |
| 6 |
5 4
|
sseq12d |
|- ( z = ( x i^i y ) -> ( ( z o. z ) C_ z <-> ( ( x i^i y ) o. ( x i^i y ) ) C_ ( x i^i y ) ) ) |
| 7 |
|
id |
|- ( z = x -> z = x ) |
| 8 |
7 7
|
coeq12d |
|- ( z = x -> ( z o. z ) = ( x o. x ) ) |
| 9 |
8 7
|
sseq12d |
|- ( z = x -> ( ( z o. z ) C_ z <-> ( x o. x ) C_ x ) ) |
| 10 |
|
id |
|- ( z = y -> z = y ) |
| 11 |
10 10
|
coeq12d |
|- ( z = y -> ( z o. z ) = ( y o. y ) ) |
| 12 |
11 10
|
sseq12d |
|- ( z = y -> ( ( z o. z ) C_ z <-> ( y o. y ) C_ y ) ) |
| 13 |
|
trin2 |
|- ( ( ( x o. x ) C_ x /\ ( y o. y ) C_ y ) -> ( ( x i^i y ) o. ( x i^i y ) ) C_ ( x i^i y ) ) |
| 14 |
1 3 6 9 12 13
|
cllem0 |
|- A. x e. A A. y e. A ( x i^i y ) e. A |