Metamath Proof Explorer


Theorem trficl

Description: The class of all transitive relations has the finite intersection property. (Contributed by RP, 1-Jan-2020) (Proof shortened by RP, 3-Jan-2020)

Ref Expression
Hypothesis trficl.a
|- A = { z | ( z o. z ) C_ z }
Assertion trficl
|- A. x e. A A. y e. A ( x i^i y ) e. A

Proof

Step Hyp Ref Expression
1 trficl.a
 |-  A = { z | ( z o. z ) C_ z }
2 vex
 |-  x e. _V
3 2 inex1
 |-  ( x i^i y ) e. _V
4 id
 |-  ( z = ( x i^i y ) -> z = ( x i^i y ) )
5 4 4 coeq12d
 |-  ( z = ( x i^i y ) -> ( z o. z ) = ( ( x i^i y ) o. ( x i^i y ) ) )
6 5 4 sseq12d
 |-  ( z = ( x i^i y ) -> ( ( z o. z ) C_ z <-> ( ( x i^i y ) o. ( x i^i y ) ) C_ ( x i^i y ) ) )
7 id
 |-  ( z = x -> z = x )
8 7 7 coeq12d
 |-  ( z = x -> ( z o. z ) = ( x o. x ) )
9 8 7 sseq12d
 |-  ( z = x -> ( ( z o. z ) C_ z <-> ( x o. x ) C_ x ) )
10 id
 |-  ( z = y -> z = y )
11 10 10 coeq12d
 |-  ( z = y -> ( z o. z ) = ( y o. y ) )
12 11 10 sseq12d
 |-  ( z = y -> ( ( z o. z ) C_ z <-> ( y o. y ) C_ y ) )
13 trin2
 |-  ( ( ( x o. x ) C_ x /\ ( y o. y ) C_ y ) -> ( ( x i^i y ) o. ( x i^i y ) ) C_ ( x i^i y ) )
14 1 3 6 9 12 13 cllem0
 |-  A. x e. A A. y e. A ( x i^i y ) e. A