Metamath Proof Explorer


Theorem triv1nsgd

Description: A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses triv1nsgd.1 B=BaseG
triv1nsgd.2 0˙=0G
triv1nsgd.3 φGGrp
triv1nsgd.4 φB=0˙
Assertion triv1nsgd φNrmSGrpG1𝑜

Proof

Step Hyp Ref Expression
1 triv1nsgd.1 B=BaseG
2 triv1nsgd.2 0˙=0G
3 triv1nsgd.3 φGGrp
4 triv1nsgd.4 φB=0˙
5 1 2 3 4 trivnsgd φNrmSGrpG=B
6 snex 0˙V
7 4 6 eqeltrdi φBV
8 ensn1g BVB1𝑜
9 7 8 syl φB1𝑜
10 5 9 eqbrtrd φNrmSGrpG1𝑜