Metamath Proof Explorer
Description: A trivial group has exactly one normal subgroup. (Contributed by Rohan
Ridenour, 3-Aug-2023)
|
|
Ref |
Expression |
|
Hypotheses |
triv1nsgd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
triv1nsgd.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
|
|
triv1nsgd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
|
|
triv1nsgd.4 |
⊢ ( 𝜑 → 𝐵 = { 0 } ) |
|
Assertion |
triv1nsgd |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
triv1nsgd.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
triv1nsgd.2 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
triv1nsgd.3 |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
4 |
|
triv1nsgd.4 |
⊢ ( 𝜑 → 𝐵 = { 0 } ) |
5 |
1 2 3 4
|
trivnsgd |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { 𝐵 } ) |
6 |
|
snex |
⊢ { 0 } ∈ V |
7 |
4 6
|
eqeltrdi |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
8 |
|
ensn1g |
⊢ ( 𝐵 ∈ V → { 𝐵 } ≈ 1o ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → { 𝐵 } ≈ 1o ) |
10 |
5 9
|
eqbrtrd |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) |