Metamath Proof Explorer


Theorem triv1nsgd

Description: A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses triv1nsgd.1 𝐵 = ( Base ‘ 𝐺 )
triv1nsgd.2 0 = ( 0g𝐺 )
triv1nsgd.3 ( 𝜑𝐺 ∈ Grp )
triv1nsgd.4 ( 𝜑𝐵 = { 0 } )
Assertion triv1nsgd ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o )

Proof

Step Hyp Ref Expression
1 triv1nsgd.1 𝐵 = ( Base ‘ 𝐺 )
2 triv1nsgd.2 0 = ( 0g𝐺 )
3 triv1nsgd.3 ( 𝜑𝐺 ∈ Grp )
4 triv1nsgd.4 ( 𝜑𝐵 = { 0 } )
5 1 2 3 4 trivnsgd ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { 𝐵 } )
6 snex { 0 } ∈ V
7 4 6 eqeltrdi ( 𝜑𝐵 ∈ V )
8 ensn1g ( 𝐵 ∈ V → { 𝐵 } ≈ 1o )
9 7 8 syl ( 𝜑 → { 𝐵 } ≈ 1o )
10 5 9 eqbrtrd ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o )