Metamath Proof Explorer


Theorem trkgdist

Description: The measure of a distance in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w W=BasendxUdistndxDItvndxI
Assertion trkgdist DVD=distW

Proof

Step Hyp Ref Expression
1 trkgstr.w W=BasendxUdistndxDItvndxI
2 1 trkgstr WStruct116
3 dsid dist=Slotdistndx
4 snsstp2 distndxDBasendxUdistndxDItvndxI
5 4 1 sseqtrri distndxDW
6 2 3 5 strfv DVD=distW