Metamath Proof Explorer


Theorem trkgdist

Description: The measure of a distance in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Hypothesis trkgstr.w
|- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. }
Assertion trkgdist
|- ( D e. V -> D = ( dist ` W ) )

Proof

Step Hyp Ref Expression
1 trkgstr.w
 |-  W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. }
2 1 trkgstr
 |-  W Struct <. 1 , ; 1 6 >.
3 dsid
 |-  dist = Slot ( dist ` ndx )
4 snsstp2
 |-  { <. ( dist ` ndx ) , D >. } C_ { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. }
5 4 1 sseqtrri
 |-  { <. ( dist ` ndx ) , D >. } C_ W
6 2 3 5 strfv
 |-  ( D e. V -> D = ( dist ` W ) )