Metamath Proof Explorer


Theorem trpredeq2d

Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Hypothesis trpredeq2d.1 φ A = B
Assertion trpredeq2d φ TrPred R A X = TrPred R B X

Proof

Step Hyp Ref Expression
1 trpredeq2d.1 φ A = B
2 trpredeq2 A = B TrPred R A X = TrPred R B X
3 1 2 syl φ TrPred R A X = TrPred R B X