Metamath Proof Explorer


Theorem trpredeq2d

Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Hypothesis trpredeq2d.1
|- ( ph -> A = B )
Assertion trpredeq2d
|- ( ph -> TrPred ( R , A , X ) = TrPred ( R , B , X ) )

Proof

Step Hyp Ref Expression
1 trpredeq2d.1
 |-  ( ph -> A = B )
2 trpredeq2
 |-  ( A = B -> TrPred ( R , A , X ) = TrPred ( R , B , X ) )
3 1 2 syl
 |-  ( ph -> TrPred ( R , A , X ) = TrPred ( R , B , X ) )