Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trpredeq2d.1 | |- ( ph -> A = B ) |
|
Assertion | trpredeq2d | |- ( ph -> TrPred ( R , A , X ) = TrPred ( R , B , X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trpredeq2d.1 | |- ( ph -> A = B ) |
|
2 | trpredeq2 | |- ( A = B -> TrPred ( R , A , X ) = TrPred ( R , B , X ) ) |
|
3 | 1 2 | syl | |- ( ph -> TrPred ( R , A , X ) = TrPred ( R , B , X ) ) |