Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trpredeq3d.1 | |- ( ph -> X = Y ) |
|
Assertion | trpredeq3d | |- ( ph -> TrPred ( R , A , X ) = TrPred ( R , A , Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trpredeq3d.1 | |- ( ph -> X = Y ) |
|
2 | trpredeq3 | |- ( X = Y -> TrPred ( R , A , X ) = TrPred ( R , A , Y ) ) |
|
3 | 1 2 | syl | |- ( ph -> TrPred ( R , A , X ) = TrPred ( R , A , Y ) ) |