Metamath Proof Explorer


Theorem trpredeq3d

Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)

Ref Expression
Hypothesis trpredeq3d.1 ( 𝜑𝑋 = 𝑌 )
Assertion trpredeq3d ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐴 , 𝑌 ) )

Proof

Step Hyp Ref Expression
1 trpredeq3d.1 ( 𝜑𝑋 = 𝑌 )
2 trpredeq3 ( 𝑋 = 𝑌 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐴 , 𝑌 ) )
3 1 2 syl ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐴 , 𝑌 ) )