Description: Equality deduction for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | trpredeq3d.1 | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) | |
Assertion | trpredeq3d | ⊢ ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐴 , 𝑌 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trpredeq3d.1 | ⊢ ( 𝜑 → 𝑋 = 𝑌 ) | |
2 | trpredeq3 | ⊢ ( 𝑋 = 𝑌 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐴 , 𝑌 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) = TrPred ( 𝑅 , 𝐴 , 𝑌 ) ) |