Step |
Hyp |
Ref |
Expression |
1 |
|
dftrpred2 |
⊢ TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) |
2 |
1
|
eleq2i |
⊢ ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ↔ 𝑌 ∈ ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) |
3 |
|
eliun |
⊢ ( 𝑌 ∈ ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ ω 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) |
4 |
2 3
|
bitri |
⊢ ( 𝑌 ∈ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∃ 𝑖 ∈ ω 𝑌 ∈ ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ) |