Metamath Proof Explorer


Theorem trpredpred

Description: Assuming it is a set, the predecessor class is a subset of the class of transitive predecessors. (Contributed by Scott Fenton, 18-Feb-2011)

Ref Expression
Assertion trpredpred ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )

Proof

Step Hyp Ref Expression
1 fr0g ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) )
2 frfnom ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Fn ω
3 peano1 ∅ ∈ ω
4 fnbrfvb ( ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∅ ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
5 2 3 4 mp2an ( ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∅ ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) )
6 1 5 sylib ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ∅ ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) )
7 0ex ∅ ∈ V
8 breq1 ( 𝑧 = ∅ → ( 𝑧 ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∅ ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
9 7 8 spcev ( ∅ ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) → ∃ 𝑧 𝑧 ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) )
10 6 9 syl ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ∃ 𝑧 𝑧 ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) )
11 elrng ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ↔ ∃ 𝑧 𝑧 ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) )
12 10 11 mpbird ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) )
13 elssuni ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) )
14 12 13 syl ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) )
15 df-trpred TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ran ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω )
16 14 15 sseqtrrdi ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) )