Step |
Hyp |
Ref |
Expression |
1 |
|
fr0g |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
2 |
|
frfnom |
⊢ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Fn ω |
3 |
|
peano1 |
⊢ ∅ ∈ ω |
4 |
|
fnbrfvb |
⊢ ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Fn ω ∧ ∅ ∈ ω ) → ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∅ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
5 |
2 3 4
|
mp2an |
⊢ ( ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∅ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
6 |
1 5
|
sylib |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ∅ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
|
breq1 |
⊢ ( 𝑧 = ∅ → ( 𝑧 ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ∅ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
9 |
7 8
|
spcev |
⊢ ( ∅ ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) → ∃ 𝑧 𝑧 ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
10 |
6 9
|
syl |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ∃ 𝑧 𝑧 ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
11 |
|
elrng |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ↔ ∃ 𝑧 𝑧 ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
12 |
10 11
|
mpbird |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ) |
13 |
|
elssuni |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ) |
14 |
12 13
|
syl |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ) |
15 |
|
df-trpred |
⊢ TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ∪ ran ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) |
16 |
14 15
|
sseqtrrdi |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ TrPred ( 𝑅 , 𝐴 , 𝑋 ) ) |