Step |
Hyp |
Ref |
Expression |
1 |
|
dftrpred2 |
⊢ TrPred ( 𝑅 , 𝐴 , 𝑋 ) = ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) |
2 |
|
trpredlem1 |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 ) |
3 |
2
|
ralrimivw |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 ) |
4 |
|
iunss |
⊢ ( ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 ↔ ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 ) |
5 |
3 4
|
sylibr |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ∪ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ ∪ 𝑦 ∈ 𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 ) |
6 |
1 5
|
eqsstrid |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 ) |