Metamath Proof Explorer


Theorem trpredss

Description: The transitive predecessors form a subclass of the base class. (Contributed by Scott Fenton, 20-Feb-2011)

Ref Expression
Assertion trpredss ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 dftrpred2 TrPred ( 𝑅 , 𝐴 , 𝑋 ) = 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 )
2 trpredlem1 ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 )
3 2 ralrimivw ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 )
4 iunss ( 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 ↔ ∀ 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 )
5 3 4 sylibr ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 𝑖 ∈ ω ( ( rec ( ( 𝑎 ∈ V ↦ 𝑦𝑎 Pred ( 𝑅 , 𝐴 , 𝑦 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ↾ ω ) ‘ 𝑖 ) ⊆ 𝐴 )
6 1 5 eqsstrid ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ 𝐵 → TrPred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 )