Metamath Proof Explorer


Theorem trpredss

Description: The transitive predecessors form a subclass of the base class. (Contributed by Scott Fenton, 20-Feb-2011)

Ref Expression
Assertion trpredss Pred R A X B TrPred R A X A

Proof

Step Hyp Ref Expression
1 dftrpred2 TrPred R A X = i ω rec a V y a Pred R A y Pred R A X ω i
2 trpredlem1 Pred R A X B rec a V y a Pred R A y Pred R A X ω i A
3 2 ralrimivw Pred R A X B i ω rec a V y a Pred R A y Pred R A X ω i A
4 iunss i ω rec a V y a Pred R A y Pred R A X ω i A i ω rec a V y a Pred R A y Pred R A X ω i A
5 3 4 sylibr Pred R A X B i ω rec a V y a Pred R A y Pred R A X ω i A
6 1 5 eqsstrid Pred R A X B TrPred R A X A